Inhibitory neuron migration and IPL formation in the developing zebrafish retina
نویسندگان
چکیده
The mature vertebrate retina is a highly ordered neuronal network of cell bodies and synaptic neuropils arranged in distinct layers. Little, however, is known about the emergence of this spatial arrangement. Here, we investigate how the three main types of retinal inhibitory neuron (RIN)--horizontal cells (HCs), inner nuclear layer amacrine cells (iACs) and displaced amacrine cells (dACs)--reach their specific laminar positions during development. Using in vivo time-lapse imaging of zebrafish retinas, we show that RINs undergo distinct phases of migration. The first phase, common to all RINs, is bipolar migration directed towards the apicobasal centre of the retina. All RINs then transition to a less directionally persistent multipolar phase of migration. Finally, HCs, iACs and dACs each undergo cell type-specific migration. In contrast to current hypotheses, we find that most dACs send processes into the forming inner plexiform layer (IPL) before migrating through it and inverting their polarity. By imaging and quantifying the dynamics of HCs, iACs and dACs from birth to final position, this study thus provides evidence for distinct and new migration patterns during retinal lamination and insights into the initiation of IPL formation.
منابع مشابه
Dev122473 2665..2677
The mature vertebrate retina is a highly ordered neuronal network of cell bodies and synaptic neuropils arranged in distinct layers. Little, however, is known about the emergence of this spatial arrangement. Here, we investigate how the three main types of retinal inhibitory neuron (RIN) – horizontal cells (HCs), inner nuclear layer amacrine cells (iACs) and displaced amacrine cells (dACs) – re...
متن کاملTargeting of amacrine cell neurites to appropriate synaptic laminae in the developing zebrafish retina.
Cellular mechanisms underlying the precision by which neurons target their synaptic partners have largely been determined based on the study of projection neurons. By contrast, little is known about how interneurons establish their local connections in vivo. Here, we investigated how developing amacrine interneurons selectively innervate the appropriate region of the synaptic neuropil in the in...
متن کاملThe Expression of irx7 in the Inner Nuclear Layer of Zebrafish Retina Is Essential for a Proper Retinal Development and Lamination
Irx7, a member in the zebrafish iroquois transcription factor (TF) family, has been shown to control brain patterning. During retinal development, irx7's expression was found to appear exclusively in the inner nuclear layer (INL) as soon as the prospective INL cells withdraw from the cell cycle and during retinal lamination. In Irx7-deficient retinas, the formation of a proper retinal laminatio...
متن کاملTransient requirement for ganglion cells during assembly of retinal synaptic layers.
The inner plexiform layer (IPL) of the vertebrate retina comprises functionally specialized sublaminae, representing connections between bipolar, amacrine and ganglion cells with distinct visual functions. Developmental mechanisms that target neurites to the correct synaptic sublaminae are largely unknown. Using transgenic zebrafish expressing GFP in subsets of amacrine cells, we imaged IPL for...
متن کاملKnockdown of Zebrafish Blood Vessel Epicardial Substance Results in Incomplete Retinal Lamination
Cell polarity during eye development determines the normal retinal lamination and differentiation of photoreceptor cells in the retina. In vertebrates, blood vessel epicardial substance (Bves) is known to play an important role in the formation and maintenance of the tight junctions essential for epithelial cell polarity. In the current study, we generated a transgenic zebrafish Bves (zbves) pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 142 شماره
صفحات -
تاریخ انتشار 2015